












Strikingly, we observed this level of expansion (Fig. 4b) of HIV-
resistant GFP-positive CD4� T cells and a concomitant inhibitory
effect on HIV only in mice transplanted with CCR5 knockdown
GFP-sorted CD34� cells (these animals had 30% [�4% SEM]
GFP� CD4� T cells on day 0). This degree of expansion was not
seen in R5 knockdown mice (which had 5% � 2% GFP� CD4� T
cells before HIV infection). Based on these results, we estimate
that at least 20% of CD4� T cells need to be CCR5 repressed to
observe homeostatic expansion and relevant effects on viremia.

Preserved engraftment and preferential expansion of central
memory T cells in FACS-sorted R5 knockdown mice upon HIV
infection. Engraftment as reflected in peripheral blood decreased
in all control cohorts but increased in the FACS-sorted R5 knock-
down mice (Fig. 5a). This effect on total engraftment was even
more impressive in the spleen. FACS-sorted R5 knockdown mice
had 10 times more human cells than control cohorts (Fig. 5b).

We evaluated the CD4� and CD8� effector (CD45RApos

CCR7neg), effector memory (CD45RAneg CCR7neg), naive
(CD45RApos CCR7pos), and central memory (CD45RAneg

CCR7pos) T-cell subsets in the blood and spleens of the FACS-
sorted R5 knockdown and representative FACS-sorted negative
mice (Fig. 5c to f). In the peripheral blood of the FACS-sorted
negative mice, the frequency of central memory CD4� T cells was
significantly decreased, and the CD8� central memory T-cell sub-
set was unchanged (Fig. 5c and e). In contrast, central memory
CD4� and CD8� T cells were increased in the FACS-sorted R5
knockdown mice. Similarly, more CD4� and CD8� central mem-
ory T cells were present in the spleens of the FACS-sorted R5
knockdown mice (Fig. 5d and f). We observed no differences be-
tween the cohorts for effector and effector memory cells (data not
shown). Notably, however, there was a trend toward a decrease in
naive CD4� and CD8� T cells in all cohorts (data not shown).

FIG 4 Outlier analysis and examples of viral load control due to homeostatic expansion of transduced cells. (a) Left graph, viral load of the FACS-sorted R5
knockdown mice (YU-2) and viral load of outlier FACS-sorted R5 knockdown mouse 954 (YU-2). Right graph, percent GFP-positive CD4� T cells of the
FACS-sorted R5 knockdown mice and mouse 954. Percent GFP-positive CD4� T cells is shown as a percentage of total CD4� T cells. P values were determined
by GraphPad Outlier calculator. *, P � 0.001. (b) Viral load and percent GFP-positive CD4� T cells of four individual FACS-sorted R5 knockdown mice (mouse
1113, JRCSF; mouse 958, YU-2; mouse 1115, JRCSF; and mouse 1608, JRCSF) that were excluded due to not reaching the inclusion criteria of �70%
GFP-positive CD4� T cells before HIV infection.
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Evidence of shift from R5- to X4-tropic strain in one mouse.
As described above (Fig. 4), FACS-sorted R5 knockdown mice had
a low viral load and maintained high levels of CCR5 knockdown
CD4� T cells. Mouse 954 was clearly an outlier: it had high viral titers
and lost GFP-positive CD4� T cells (Fig. 6a). We hypothesized that
this mouse might have had a tropism shift of the virus from R5 to X4.
We performed HIV population sequencing (from plasma) on days 57
and 196. As a control, we analyzed mouse 958 (Fig. 6b). Sequencing
revealed no mutations in mouse 958. Mouse 954 had mutations in
the V3 loop of the HIV envelope sequence (Fig. 6c), resulting in

amino acid substitutions to basic amino acids as indicated (Fig. 6d).
Substitutions in the V3 loop to basic amino acids have been reported
to result in a switch from R5 to X4 tropism (38).

DISCUSSION

In this study, we investigated a lentiviral vector-based, CCR5-tar-
geting miRNA as a tool for engineering an HIV-resistant human
immune system. We show that (i) the miRNA-based vector was
very efficient in downregulating CCR5 on T cells and prevented
their infection by HIV ex vivo, (ii) only mice that were trans-

FIG 5 Increased engraftment and central memory T cells in blood and spleens of FACS-sorted R5 knockdown mice. (a) Change in level of peripheral blood
engraftment expressed as the ratio of total CD45� at the end and preinfection. Values are means � SEMs. **, P 
 0.0031; ***, P 
 0.0006; ****, P � 0.0001. P
values were determined by two-tailed unpaired t test. (b) Absolute numbers of human cells (CD45�) in the spleen at termination. Values are means � SEMs. *,
P 
 0.0229; **, P � 0.0019. P values were determined by two-tailed unpaired t test. (c and e) Percent CD4� and CD8� central memory T cells in the peripheral
blood, preinfection and at the end time point. Values are means and SEMs. *, P 
 0.0153; **, P 
 0.0042; ***, P 
 0.0004. P values were determined by paired
t test. (d and f) Percent CD4� and CD8� central memory T cells in the spleen at termination. Values are means � SEMs. *=, P 
 0.0472; *, P 
 0.0106; **, P 

0.0022; ***, P 
 0.0001; ****, P � 0.0001. P values were determined by two-tailed unpaired t test.
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planted with a preselected population of transduced CD34� cells
and maintained gene-engineered CD4� T cells had a dramatically
reduced viral load (functional cure), and (iii) the HIV-infected
mice transplanted with miRNA CCR5 gene-engineered CD34�

cells showed a dramatic expansion of memory T cells (i.e., the
miRNA-edited T cells were mainly of this phenotype). Thus, we
provide here preclinical proof of concept for gene engineering of
an HIV-resistant immune system through the use of vector-me-
diated miRNA expression and the need for a certain threshold of
gene-engineered CD34� cells for functional cure of HIV.

While gene engineering of HIV-resistant cells is a viable option
for cure of HIV, major issues remain to be solved. These include
finding the best antiviral moiety or combination, the most effica-
cious way to gene engineer the CD34� cells, and the threshold of
gene-engineered CD34� cells needed for functional cure.

Lentivirus-based transduction has been supplemented by
gene-targeting methods, such as ZNF or Talen nucleases, or the
Crispr/Cas system for gene editing (23–25). However, off-target
effects of these methods are still unknown, and gene engineering
in primary cells is only modestly effective (26). And even though
no adverse events have been reported, there is less experience in

clinical trials with gene-targeting methods than with lentivirus-
based transduction. Thus, we opted for lentivirus-based gene en-
gineering (39–41). Furthermore, we are the first to engage in
miRNA technology for knocking down the HIV coreceptor CCR5
in CD4� T cells via gene engineering of CD34� cells. miRNAs
closely mimic naturally occurring pri-miRNAs and thus are less
likely to cause oversaturation of the RNA interference pathway
and to affect cellular homeostasis than the widely used shRNAs
(42, 43). However, miRNAs are thought to have a lower capacity
to downregulate target genes than shRNAs. In this study, we used
a miRNA we developed with optimized features that efficiently
knock down target genes upon single-copy vector transduction
(30). Ex vivo-sorted cells were indeed resistant to a challenge with
CCR5-tropic strains. However, bulk transplantation of trans-
duced CD34� cells into mice resulted in a human lymphoid sys-
tem that replicated HIV similarly to untransduced hu mice but
preserved CD4� T-cell counts. Similar data have been reported
previously (15).

We hypothesized that the majority of HSPCs needs to be gene
engineered to see an effect on the HIV load; otherwise, the HIV-
permissive CD4� T cells that originated from the untransduced

FIG 6 Population sequencing of HIV in plasma: evidence for gene therapy failure. (a and b) Plots showing the percent GFP-positive CD4� T cells in peripheral
blood (as a percentage of CD3� T cells) on the left y axis and HIV load on the right y axis for mice 954 and 958, respectively. Mouse 954 had a high and sustained
viral load over time, with a complete loss of GFP-positive CD4� T cells. Mouse 958 experienced an expansion of GFP-positive CD4� T cells from less than 30%
on day 19 to more than 80% on day 196. (c) On day 57, both animals had a homogenous HIV population in the peripheral blood; sequencing data of HIV
envelope V3 loop are consistent with an R5-tropic HIV strain. On day 196, mouse 954, which experienced a complete loss of GFP-positive CD4� T cells (blood
and spleen), had detectable mutations within the V3 loop of HIV. For mouse 958, no mutations were detected in the V3 loop on day 196, indicating the presence
of a homogenous HIV population. (d) Changes to basic amino acids H and R. According to a Geno2Pheno (http://www.geno2pheno.org/) analysis of the
obtained sequence in panel c, there is only 18% confidence that the virus at day 196 of mouse 954 was not an X4 variant.
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CD34� cells would “outnumber” the HIV-resistant cells. Thus, we
used GFP to allow for efficient sorting of transduced CD34� cells
before transplantation. By doing so, we found that to achieve
long-term suppression of viral load, more than 70% of CD34�

transplanted should be gene engineered. Walker et al. obtained an
average engraftment (� standard deviation [STD]) level of anti-
HIV vector-transduced cells of 17.5% � 8% in the peripheral
blood and argued that these numbers of cells were insufficient to
see any decrease in plasma viremia (15). Furthermore, a very re-
cent publication from the same group sorted the gene-engineered
CD34� cells with a truncated version of CD25 (tCD25) before
their transplantation into 2- to 5-day-old NRG mice (20). They
found that mice transplanted with tCD25-purified CD34� cells
had normal multilineage hematopoiesis, similar to mice trans-
planted with untransduced CD34� cells. Upon HIV challenge,
tCD25-transplanted mice did not suffer from HIV-induced CD4�

T-cell depletion as did the untransduced mice, and tCD25 mice
had a 1.5-log inhibition in plasma viremia compared to that of
mice with untransduced CD34� cells. Our data nicely comple-
ment the data provided by Walker et al. and Barclay et al. and
underline the importance of the number of transduced cells that
are required for efficient HIV gene therapy. Notably, three hu
mice transplanted with purified gene-engineered CD34� cells
showed at baseline �30% GFP� cells which expanded substan-
tially upon HIV infection; the expansion went along with a de-
crease in viral load. The data for these three mice were reminiscent
of the data reported by Holt et al. showing that disruption of
CCR5 by zinc finger nucleases was achieved in �20% of CD34�

cells and resulted in viral repression over time (16).
Obviously, in humans, GFP-based sorting would not be an

option, given the xenogeneic nature of the protein. However,
novel strategies for sorting of transduced CD34� cells based on the
expression of truncated cellular surface receptors, such as CD25
(20), the epidermal growth factor receptor (44), or the nerve
growth factor receptor (45), are very promising for achieving high
numbers of engrafted gene-engineered cells. An alternative ap-
proach to pretransplantation sorting would be in vivo selection of
transduced cells (46, 47). Regrettably, current in vivo selection
methods use potentially carcinogenic compounds, such as myco-
phenolate, methotrexate, or alkylating agents (i.e., O6-benzylgua-
nine/bis-chloroethylnitrosourea), that offset their use in a disease,
such as HIV, that is amenable to an efficient and well-tolerated
cART. We want to emphasize that in our gene-engineering efforts,
we aimed for single lentiviral copy integration. The two recent
phase I clinical trials used gene engineering protocols that resulted
in vector copy numbers ranging from 2 to 4 per genome of bone
marrow cells prior to transplantation without documenting any
adverse events over an observation period of �20 months (39,
40). Thus, ensuring CD34� transduction might present another
alternative for increasing the number of gene-engineered CD34�

cells. These protocols appeared not to affect the long-term en-
graftment negatively in these phase I clinical trials.

In fact, we do not know the number of gene-engineered HSPCs
needed to render the immune system resistant to HIV. As outlined
above, we aimed for a rather pure population of gene-engineered
HSPCs as proof of preclinical concept. However, we observed
HIV-lowering effects in some mice with 20 to 40% engraftment of
transduced cells, data similar to those reported by Holt et al. (16).
HIV, certainly by killing untransduced cells via its cytopathic ef-
fects, will promote the expansion of HIV-resistant cells. To what

extent the HIV-resistant cells will foster an efficient HIV-specific
immune response and thereby constrain HIV remains unknown.
Whether additional factors contribute to HIV-lowering effects re-
mains unknown.

White blood cell counts from HIV-infected mice generated
with FACS-sorted R5 KD cells showed an expansion of central
memory CD4� and CD8� T cells, while all other groups showed a
progressive loss of these CD4� memory T cells and no change in
CD8� T cells. This pattern was also evident when looking at the
splenocytes. These memory CD8� T cells might have contributed
to the control of HIV. There was a decrease in the frequency of
naive CD4� and CD8� T cells in the peripheral blood in both
FACS-sorted negative and FACS-sorted R5 KD mice, whereas in
the spleen, the naive CD4� and CD8� T cells in the FACS-sorted
R5 KD mice tended to be higher (data not shown). The expansion
of central memory T cells is reminiscent of the immune reconsti-
tution seen in HIV-infected patients on ART (48).

HIV is known for its high mutational rate. In this respect, we
observed one mouse (mouse 954) with an escape mutation. De-
spite high levels (day 0) of engraftment of CCR5 knockdown cells,
this mouse had a high viral load and a complete loss of circulating
CD4� T cells. Population sequencing of the V3 loop indicated a
likely shift to X4 tropism, which might explain the uncontrolled
infection. The mutations were detectable in the blood only at rel-
atively late time points. This might be due to an initial compart-
mentalized replication of the X4-tropic strains in the thymus. We
previously showed that X4-HIV NL4-3 severely depleted the thy-
mus, whereas YU-2 had only minor effects (49). However, we do
not know whether the potential emergence was due to the CCR5
knockdown or was just a coincidence. Indeed, emergence of
CXCR4-tropic strains may occur without any immune or drug
pressure in hu mice infected with CCR5-tropic strains (50). In any
case, CCR5 knockdown should be done in concert with another
strategy to constrain HIV (i.e., including another anti-HIV moi-
ety, combining with efficient antiretrovirals, or boosting the im-
mune response in parallel to transplantation). Indeed, the solid-
ness of successful gene engineering by the expression of more than
one antiviral moiety may prevent HIV evolution (51). Gene engi-
neering could be combined with conventional ART: combining
two treatment modalities was efficient in cell lines (52), as induc-
tion therapy (53) or with anti-PD1 antibodies that decrease viral
load and increase the level of CD4� T cells in HIV-infected mice
(54). In any case, gene engineering efforts cannot promote more
virulent HIV strains, either for the individual patient or for the
general population.

In summary, our results provide the first preclinical proof of
concept that transplantation of miRNA CCR5 knockdown
CD34� cells can lead to long-term control of HIV viremia. Trans-
lation of our results to the clinical setting is relatively straightfor-
ward but will require the implementation of existing strategies for
pre- and posttransplantation selection compatible with human use.
At this point, our strategy demonstrates long-term viral control but
not yet a cure. However, while a cure remains the ultimate goal, long-
term viral control independent of antiretrovirals is a relevant inter-
mediate step, worth translating to the clinical setting. We believe that
a definitive cure of HIV might indeed come from a combination of
different approaches such as CCR5 knockdown combined with drug
therapy, vaccination, or a second gene therapy target.
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